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Abstract 
It is shown that  non-trivial solutions c o m m o n  to the  vacuum field equations of the  
Einstein and o f  the  Brans-Dicke theories necessarily represent  pp-waves and the  set of  all 
c o m m o n  solutions is precisely the  set o f  all pp-wave solutions o f  the  Einstein equations.  
The form of  the  associated scalar field is found  and is shown to be  singular when  co < - 1 .  

Horndeski (1973) has shown that the plane-wave solutions of Einstein's 
vacuum equations found by Kundt (1961) are also solutions of the vacuum 
field equations of the Brans-Dicke theory (Brans & Dicke, 1962). Kundt's 
solutions are of type N in the Petrov classification and represent the so-called 
pp-waves (Eiders & Kundt, 1962). In this note we show that, apart from trivial 
flat space-time solutions, all common vacuum solutions of the Einstein and 
Brans-Dicke theories represent pp-waves and these common solutions consist 
of all possible pp-wave solutions of Einstein's equations. We ignore the case 
4) = constant for which the Brans-Dicke equations reduce tO those of Einstein. 

The vacuum field equations of the Brans-Dicke theory are 

Ru~ + ¢-l(q~;u~ 1 + gguu~b; a) + co4}-2~b,u~,u = 0 (1) 

(3 + 2oo)4;~ = 0 (2) 

and the required common solutions will also satisfy the Einstein vacuum 
equations 

R,~ = 0 (3) 

From equations (1), (2) and (3) it follows that when co 4= 0 and co ¢ -~: 
the common solutions are derived from the equations 
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•;#v + (ag~b-l~,#¢, v = 0 (4)  

¢,.¢,~ = 0 (5 )  

3 together with equation (3). When co = 0 or co = - ~ ,  ¢,u may be a null vector, 
as in equation (5), but is not necessarily so. Assuming that 0, u is a null vector 
the equations (4) and (5) hold for all w. A vector r .  can be defined by 

r .  = 4~ w q~>. (6) 

so that  equations (4) and (5) become 

7".;, = 0 (7) 

7".r. = 0 (8) 

Thus the space-time admits a covariantly constant null vector and, by  a 
theorem of  Ehlers & Kundt ( t962) ,  this characterizes a pp-wave solution. 

That all pp-wave solutions of  the Einstein equations are included in these 
common solutions can be seen from the fact that any pp-wave solution of  
equations (3) admits a vector % satisfying equations (7) and (8) and since this 
vector is a gradient (Ehlers & Kundt, 1962) it follows that equation (6) can be 
integrated to give a function ~ satisfying equations (4) and (5). 

There remains the case when co = 0 or co = - ~  and ¢ , .  is not  a null vector. 
Consider first ~ = 0. From equations (1), (2) and (3) we have ¢;uv = 0, i.e. 

- R . ~ 0 , a  = 0 ( 9 )  ~,b; .vcr ¢;.cw ==- a 

In view of  equation (3) this can be written in the form 

Ca.roe,  ~ = 0 (10) 

where Cauuo is the Weyl tensor. Taking the right dual of  equation (10) and 
using the fact that the right and left duals of  the Weyl tensor are equal we 
obtain 

~ .y~  C~u~¢, ~ = 0 

where r/ate8 is the permutat ion tensor. Multiplying this by r~ de°° we find 

8ep~ fey6 ,~ a = 0 
c~'3,8 ~ t.Lvw, 

i.e. 

¢,[ccPaluv = 0 

Contracting this expression with ~b, e and using equation (1 O) we obtain finaUy 

O, egJ,eCP'Tuv = 0 

so that  if ¢, e is not null, CPauv = 0 which, from (3), implies that  the space-time 
is flat. 
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Consider now co = - ~  with 0,u not null. From equations (1), (2) and (3) 
we have 

= ¢ - 1 ~ 3 ¢  ~ 1 

Differentiating equation (10) we find, as in the case co = 0, that equation (8) 
holds so, by the same argument, the space-time is again flat. This concludes the 
proof of  the stated result. 

To investigate the form of the function ¢ corresponding to these common 
solutions we note that the conditions (7) and (8) imply the existence of  a 
co-ordinate system in which the metric assumes the form (Ehlers & Kundt, 
1962) 

ds 2 = 2 H  (x ,  y , u )  du  2 + 2du  dv  - d x  2 - d y  2 (12)  

with 

H,x x + H, yy = 0 

and in which the vector field ~'~ assumes the form 

% =u ,u  (13) 

Equation (13) implies that @ = ¢(u)  and T u is absolutely constant, i.e. 

~ b , ~  = 1 

which integrates to give 

(~ = q)Ob/(c°+ 1)-1 (co 4: - 1 )  (14) 

¢ = ¢ o  eu (co = - i )  (15) 

with a suitable choice of  origin, ¢o being a constant. 
From (14) ¢ is singular at u = 0 when co < - t  ; the physical meaning of  

this is obscure but the existence of  singularities in the scalar 0 associated with 
a singularity-free metric solution has been noticed elsewhere (O'Hanlon & 
Tupper, 1972). Another curious feature is the presence of  flat space-time 
solutions associated with non-constant values of  ~b, which appears to be incon- 
sistent with the statement (Brans & Dicke, 1962) '¢  has as its sources the 
matter distribution in space'. In particular, the solution (12) is flat when H = 0 
and a corresponding solution for ¢ is that given by (14) or (15). Hence when 
co < - 1 ,  fiat space-time with a singular scalar field is a solution of  the Brans- 
Dicke vacuum field equations. 

Acknowledgements  

Our original proof  of the result proved here used a cumbersome method based on 
the spin coefficient formalism of Newman & Penrose (1962); we are indebted to 
J. Ehlers and to J. Wainwright who, independently, drew our attention to the short 
proof that the common solutions are pp-waves and to J. O'Hanlon for the short proof 
that the space-time is flat when 0,/~ is not null. We are also indebted to G. W. 
Horndeski for communicating results from his Ph.D. thesis and to K. Dunn and 
N. Tariq for useful discussions. This work was supported, in part by the National Research 
Council of Canada through operating grant A7589. 



356 B. o , J .  TUPPER 

References 

Brans, C. and Dicke, R. H. (1961). PhysicalReview, 124, 925. 
Ehlers, J. and Kundt, W. (1962). Gravitation: An Introduction to Current Research 

(Ed. L. Witten). Wiley, New York. 
Horndeski, G. W. (1973). Ph.D. Thesis, University of Waterloo. 
Kundt, W. (1961 ). Zeitshrift fiir Physik, 163, 77. 
Newman, E. T. and Penrose, R. (1962). Journal o f  MathematicalPhysics, 3,566. 
O'Hanlon, J. and Tupper, B. O. J. (1972).IlNuovo Cimento, 7B, 305. 


